首页> 外文OA文献 >Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore
【2h】

Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore

机译:激发态质子转移诱导的捕获增强了锁定的GFp发色团的荧光发射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis–trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S and S potential energy surfaces relevant to enol–keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S keto species from approaching the keto S/S conical intersections so that most of trajectories are trapped in the S keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis–trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness.
机译:绿色荧光蛋白(GFP)核心发色团中中心单键的化学锁定以独特的方式影响其激发态行为。实验上,它显着提高了具有邻羟基基团的GFP发色团的荧光量子产率,而对具有对羟基基团的GFP发色团的光物理几乎没有影响。为了揭示这种不同行为的潜在物理原因,我们报告了在锁定的邻位取代的GFP模型发色团中,对激发态分子内质子转移,顺反异构化和激发态失活的静态电子结构计算和非绝热动力学模拟。 -LHBI)。根据我们以前和现在的结果,我们发现酮类物质负责未锁定的o-HBI和锁定的o-LHBI物质的荧光发射。化学锁定不会改变与烯醇-酮互变异构有关的S和S势能表面的部分。因此,在两种生色团中,均存在平均仅需35 fs的超快激发态分子内质子转移。但是,锁定有效地阻止了S酮物种接近S / S圆锥形交叉点,因此在整个2 ps的仿真时间内,大多数轨迹都被困在S酮区域。因此,与解锁的o-HBI相比,o-LHBI的荧光量子产率得到了提高,其中S激发态衰减是有效且超快的。在对位取代的GFP模型生色团p-HBI和p-LHBI的情况下,化学锁定几乎不影响它们通过顺反异构化的有效激发态失活。因此,这些生色团的荧光量子产率仍然很低。从目前的工作中获得的见识可能有助于指导具有改进的荧光发射和亮度的新的GFP发色团的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号